Fundamentals Of Semiconductor Fabrication Solution

The collaboration and research that was developed to produce the MIT Gas Turbine Engine are described in this book. Both the engine and generator are fabricated from silicon using a combination of bulk and surface microfabrication technologies. The book discusses the technical details that have gone into producing the engine and the overall systems-level tradeoffs, in particular its motor compressors and turbine generators, and the decisions that have been made.

Technology computer-aided design, or TCAD, is critical to today's semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.

Fundamentals of Momentum, Heat and Mass Transfer, Revised, 6th Edition provides a unified treatment of momentum transfer (fluid mechanics), heat transfer and mass transfer. The new edition has been updated to include more modern examples, problems, and illustrations with real world applications. The treatment of the three areas of transport phenomena is done sequentially. The subjects of momentum, heat, and mass transfer are introduced, in that order, and appropriate analysis tools are developed.

Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.

The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc.) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

The book summarizes and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. In its first part, the book motivates the necessity for lateral power transistors by a top-down approach: First, it presents typical energy conversion applications in modern industrial, automotive and consumer electronics. Next, it introduces common circuit topologies suitable for these applications, and discusses the feasibility for monolithic integration. Finally, the combination of power and logic functionality on a single chip is motivated and the requirements and limitations for the power semiconductor devices are deduced. The second part describes the evolution of lateral power transistors over the past decades from the simple pin-type concept to double-acting RESURF topologies. It describes the principle of operation for these LDMOS devices and discusses limitations of lateral power devices. Moreover, figures-of-merit are presented which can be used to evaluate the performance of the novel lateral power transistors described in this book with respect to the LDMOS devices. In the last part, [..] the fundamental physical concepts including charge compensation and trench gate topologies are discussed. Also, the status of research in LDMOS devices on silicon carbide is presented. Advantages and drawbacks for each of these integration approaches are summarized, and the feasibility with respect to power electronic applications is evaluated.

This volume gives an overview of the state-of-the-art with respect to the development of all types of parallel computers and their application to a wide range of problem areas. The international conference on parallel computing ParCo97 (Parallel Computing 97) was held in Bonn, Germany from 19 to 22 September 1997. The first conference in this biannual series was held in 1983 in Berlin. Further conferences were held in Leiden (The Netherlands), London (UK), Grenoble (France) and Gent (Belgium). From the outset the aim with the ParCo (Parallel Computing) conferences was to promote the application of parallel computers to solve real life problems. In the case of ParCo97 a new milestone was reached in that more than half of the papers and posters presented were concerned with application aspects. This fact reflects the coming of age of parallel computing. Some 200 papers were submitted to the Program Committee by authors from all over the world. The final programme consisted of four invited papers, 71 contributed scientific/industrial papers and 45 posters. In addition a panel discussion on Parallel Computing and the Evolution of Cyberspace was held. During and after the conference all final contributions were refereed. Only those papers and posters accepted during this final screening process are included in this volume. The practical emphasis of the conference was accentuated by an industrial exhibition where companies demonstrated the newest developments in parallel

processing equipment and software. Speakers from participating companies presented papers in industrial sessions in which new developments in parallel computing were reported. Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.

Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot's body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular

This book teaches fundamentals of stream processing, covering application design, distributed systems infrastructure, and continuous analytic algorithms.

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.

This collection provides researchers and industry professionals with complete guidance on the synthesis, analysis, design, monitoring, and control of metals, materials, and metallurgical processes and phenomena. Along with the fundamentals, it covers modeling of diverse phenomena in processes involving iron, steel, non-ferrous metals, and composites. It also goes on to examine second phase particles in metals, novel sensors for hostile-environment materials processes, online sampling and analysis techniques, and models for real-time process control and quality monitoring systems.

This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light-matter interactions, and quantum technologies.

In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous "Moore's law" which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g., speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits tenology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.

Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress

logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size (small particles) and dimensionality (surface and interfaces) effects -- the underpinnings of nanoscience and nanotechnology that are brought into sharp focus by magnetism. The hallmark of modern science is its interdisciplinarity, and the second half of the book offers interdisciplinary discussions of information technology, magnetoelectronics and the future of biomedicine via recent developments in magnetism. Modern materials with tailored properties require careful synthetic and characterization strategies. The book also includes relevant details of the chemical synthesis of small particles and the physical deposition of ultra thin films. In addition, the book presents details of state-of-the-art characterization methods and summaries of representative families of materials, including tables of properties. CGS equivalents (to SI) are included.

Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion provides an introduction to the fundamental physical principles of solar cells. It aims to promote the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to energy supply. The book begins with a review of basic concepts such as the source of energy, the role of photovoltaic conversion, the development of photovoltaic cells, and sequence of phenomena involved in solar power generation. This is followed by separate chapters on each of the processes that take place in solar cell. These include solar input; properties of semiconductors; recombination and the flow of photogenerated carriers; charge separation and the characteristics of junction barriers; and calculation of solar efficiency. Subsequent chapters deal with the operation of specific solar cell devices such as a single-crystal homojunction (Si); a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs); and a polycrystalline, thin-film cell (CuxS/CdS). This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells.

Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics, bioelectronics

This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This is a must-have reference for any engineer or manager associated with using or supplying cleaning and contamination free technologies for semiconductor manufacturing. From the Reviews... "This handbook will be a valuable resource for many academic libraries. Many engineering librarians who work with a variety of programs (including, but not limited to Materials Engineering) should include this work in their collection. My recommendation is to add this work to any collection that serves a campus with a materials/manufacturing/electrical/computer engineering programs and campuses with departments of physics and/or chemistry with large graduate-level enrollment." —Randy Wallace, Department Head, Discovery Park Library, University of North Texas

"Explores the science and technology of lithographic processes and resist materials and summarizes the most recent innovations in semiconductor manufacturing. Considers future trends in lithography and resist material technology. Reviews the interaction of light, electron beams, and X-rays with resist materials."

Many physiological processes are reliant on activities in the cell membrane. These activities are of great importance to our well-being since they allow the cells to respond to their environment and communicate with each other to function as tissues and organs. In this thesis the use of organic electronic devices to interface with cell membranes has been explored. Organic electronics are especially suited for the task given their ability to transduce ionic to electronic signals. Four scientific papers are included in the thesis, where organic electronic devices are used together with living cells and supported lipid bilayers (SLB). In the first paper a ferroelectric cell release surface is presented. Release of cells cultured on the surface was induced by a polarization change in the ferroelectric polymer. This non-enzymatic release method was developed primarily for treatment of severe burns. The remaining three papers strive to combine lipid bilayers and the conjugated polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) in biosensors. The target device is an organic electrochemical transistor (OECT) functionalized with a supported lipid bilayer. Several aspects of the integration are explored, including promotion of vesicle fusion onto PEDOT:PSS and optimization of OECT design and biasing conditions for sensing. For SLB formation on PEDOT:PSS two different silica material systems, one PEDOT:PSS/silica composite and one mesoporous silica film, were evaluated with respect to electrical properties and quality of the resulting bilayer. The electrical properties were found to be similar, but the quality of the bilayer was better on the mesoporous silica film. In the last two papers the focus is on optimization of OECTs for sensing purposes. Biasing conditions for operation at high transconductance were identified, as well as design principles for large sensor output in impedance sensing.

Discover the principles and practices behind analytic chemistry as you study its applications in medicine, industry and the sciences with Skoog/West/Holler/Crouch's FUNDAMENTALS OF ANALYTICAL CHEMISTRY, 10th Edition. This award-winning author team presents the latest developments in analytic chemistry today using a reader-friendly yet systematic and thorough approach. Each chapter begins with a compelling story and stunning visuals. Dynamic photos from renowned chemistry photographer Charlie Winters capture attention while reinforcing key principles. New features highlight chemistry-related careers. You also learn how to use Excel 2019 as a problem-solving tool in analytical chemistry with new exercises, updates and examples. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

The book explains the principles and fundamentals of photocatalysis and highlights the current developments and future potential of the green-chemistry-oriented applications of various inorganic, organic, and hybrid photocatalysts. The book consists of eleven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and

also makes it suitable for use in an advanced course.

dynamics of surface photocatalysis; research on TiO2-based composites with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to TiO2; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. In addition, heterogeneized polyoxometalate materials for photocatalytic purposes and the proper design of photocatalytic reactors and modeling of light are also discussed. This book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Juan Carlos Colmenares is a Professor at the Institute of Physical Chemistry, Polish Academy of Sciences, Poland. Yi-Jun Xu is a Professor at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China.

This awesome achievement provides up-to-date, wide-ranging and authoritative coverage of the specific terms most used in electrochemistry and its related fields, including relevant areas of physics and engineering. This modern compendium will be an indispensable source of information for scientists, engineers, and technical staff active in all fields of electrochemistry. Containing almost 3,000 entries, its unsurpassed authority derives from the fact that the contributions come from a distinguished panel of eminent electrochemists. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired.

This volume of Analog Circuit Design concentrates on three topics: Volt Electronics; Design and Implementation of Mixed-Mode Systems; Low-Noise and RF Power Amplifiers for Telecommunication. The book comprises six papers on each topic written by internationally recognised experts. These papers are tutorial in nature and together make a substantial contribution to improving the design of analog circuits. The book is divided into three parts: Part I, Volt Electronics, presents some of the circuit design challenges which are having to be met as the need for more electronics on a chip forces smaller transistor dimensions, and thus lower breakdown voltages. The papers cover techniques for 1-Volt electronics. Part II, Design and Implementation of Mixed-Mode Systems, deals with the various problems that are encountered in mixed analog-digital design. In the future, all integrated circuits are bound to contain both digital and analog sub-blocks. Problems such as substrate bounce and other substrate coupling effects cause deterioration in signal integrity. Both aspects of mixed-signal design have been addressed in this section and it illustrates that careful layout techniques embedded in a hierarchical design methodology can allow us to cope with most of the challenges presented by mixed

This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.

Fundamentals of Semiconductor Devices is a comprehensively written text which deals with both qualitative and quantitative analysis of semiconductor theory & devices. This book is perfect for the first course on Semiconductor Physics and Devices at the UG level.

This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.

????????——??????(???)

Fundamentals of Semiconductor Manufacturing and Process ControlJohn Wiley & Sons

A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in

2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology. Engineers rely on Groover because of the book's quantitative and engineering-oriented approach that provides more equations and numerical problem exercises

A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters that measure quality. The authors introduce process modeling concepts, including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and management of overall manufacturing systems * Chapters include case studies, sample problems, and suggested exercises * Instructor support includes electronic copies of the figures and an instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials and supplies are converted into finished integrated circuits and electronic products in a high-volume manufacturing environment. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. An Instructor Support FTP site is also available. Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separate chapter of examples illustrating these systems in use. Drawing on the author's 20 years of industry experience, the book shows you how to customize strategies specific to your needs, solve current problems, and prevent future issues in your exhaust management systems.

An accessible guide to how semiconductor electronics work and how they are manufactured, for professionals and interested readers with no electronics engineering background. Semiconductors are the basis for almost all modern electronic devices. The author—an expert on the topic—explores the fundamental concepts of what a semiconductor is, the different types in use, and how they are different from conductors and insulators. The book has a large number of helpful and illustrative drawings, photos, and figures. The author uses only simple arithmetic to help understand the device operation and applications. The book reviews the key devices that can be constructed using semiconductor materials such as diodes and transistors and all the large electronic systems based on these two component such as computers, memories, LCDs and related technology like Lasers LEDs and infrared detectors. The text also explores integrated circuits and explains how they are fabricated. The author concludes with some projections about what can be expected in the future. This important book: Offers an accessible guide to semiconductors using qualitative explanations and analogies, with minimal mathematics and equations Presents the material in a well-structured and logical format Explores topics from device physics fundamentals to transistor formation and fabrication and the operation of the circuits to build electronic devices and systems Includes information on practical applications of p-n junctions, transistors, and

integrated circuits to link theory and practice Written for anyone interested in the technology, working in semiconductor labs or in the semiconductor industry, Semiconductor Basics offers clear explanations about how semiconductors work and its manufacturing process.

The devices described in "Advanced MOS-Gated Thyristor Concepts" are utilized in microelectronics production equipment, in power transmission equipment, and for very high power motor control in electric trains, steel-mills, etc. Advanced concepts that enable improving the performance of power thyristors are discussed here, along with devices with blocking voltage capabilities of 5,000-V, 10,000-V and 15,000-V. Throughout the book, analytical models are generated to allow a simple analysis of the structures and to obtain insight into the underlying physics. The results of two-dimensional simulations are provided to corroborate the analytical models and give greater insight into the device operation.

A systematic, accessible introduction to III-V semiconductor devices With this handy book, readers seeking to understand semiconductor devices based on III-V materials no longer have to wade through difficult review chapters focusing on a single, novel aspect of the technology. Well-known industry expert William Liu presents here a systematic, comprehensive treatment at an introductory level. Without assuming even a basic course in device physics, he covers the dc and high-frequency operations of all major III-V devices-heterojunction bipolar transistors (HBTs), metal-semiconductor field-effect transistors (MESFETs), and the heterojunction field-effect transistors (HFETs), which include the high electron mobility transistors (HEMTs). An excellent introduction for researchers and circuit designers working on wireless communications equipment, Fundamentals of III-V Devices offers a variety of features, including: * An introductory chapter on the basic properties, growth process, and device physics of III-V materials * Coverage of both dc and high-frequency models, integrating aspects of device physics and circuit design * A discussion of transistor fabrication and device comparison * 55 worked-out examples illustrating design considerations for a given application * 215 figures and end-of-chapter practice problems * Appendices listing parameters for various materials and transistor types

Copyright: afdb1b46644f7409a99dd586fb351f6b