Chapter 16 Evolution Of Populations Vocabulary **Review Biology** At a glance, most species seem adapted to the environment in which they live. Yet species relentlessly evolve, and populations within species evolve in different ways. Evolution, as it turns out, is much more dynamic than biologists realized just a few decades ago. In Relentless Evolution, John N. Thompson explores why adaptive evolution never ceases and why natural selection acts on species in so many different ways. Thompson presents a view of life in which ongoing evolution is essential and inevitable. Each chapter focuses on one of the major problems in adaptive evolution: How fast is evolution? How strong is natural selection? How do species co-opt the genomes of other species as they adapt? Why does adaptive evolution sometimes lead to more, rather than less, genetic variation within populations? How does the process of adaptation drive the evolution of new species? How does coevolution among species continually reshape the web of life? And, more generally, how are our views of adaptive evolution changing? Relentless Evolution draws on studies of all the major forms of life—from microbes that evolve in microcosms within a few weeks to plants and animals that sometimes evolve in detectable ways within a few decades. It shows evolution not as a slow and stately process, but rather as a continual and sometimes frenetic process that favors yet more evolutionary change. Conservation and the Genetics of Populations gives acomprehensive overview of the essential background, concepts, andtools needed to understand how genetic information can be used todevelop conservation plans for species threatened withextinction. Provides a thorough understanding of the genetic basis ofbiological problems in conservation. Uses a balance of data and theory, and basic and appliedresearch, with examples taken from both the animal and plantkingdoms. An associated website contains example data sets and softwareprograms to illustrate population genetic processes and methods ofdata analysis. Discussion questions and problems are included at the end of each chapter to aid understanding. Features Guest Boxes written by leading people in the fieldincluding James F. Crow, Nancy FitzSimmons, Robert C. Lacy, MichaelW. Nachman, Michael E. Soule, Andrea Taylor, Loren H. Rieseberg, R.C. Vrijenhoek, Lisette Waits, Robin S. Waples and AndrewYoung. Supplementary information designed to support Conservationand the Genetics of Populations including: Downloadable sample chapter Answers to questions and problems Data sets illustrating problems from the book Data analysis software programs Website links An Instructor manual CD-ROM for this title is available. Pleasecontact our Higher Education team at Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of ahref="mailto:HigherEducation@wiley.com"HigherEducation@wiley.com/afor more information. species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level. Part 1: What is ecology? Chapter 1: Introduction to the science of ecology. Chapter 2: Evolution and ecology. Part 2: The problem of distribution: populations. Chapter 3: Methods for analyzing distributions. Chapter 4: Factors that limit distributions: dispersal. Chapter 5: Factors that limit distributions: habitat selections. Chapter 6: Factors that limit distributions: Interrelations with other species. Chapter 7: Factors that limit distributions: temperature, moisture, and other physical-chemical factors. Chapter 8: The relationship between distribution and abundance. Part 3: The problem of abundance: populations. Chapter 9: Population parameters. Chapter 10: Demographic techniques: vital statistics. Chapter 11: Population growth. Chapter 12: Species interactions: competition. Chapter 13: Species interactions: predation. Chapter 14: Species interactions: Herbivory and mutualism. Chapter 15: Species interactions: disease and parasitism. Chapter 16: Population regulation. Chapter 17: Applied problems I: harvesting populations. Chapter 18: Applied problems II: Pest control. Chapter 19: Applied problems III: Conservation biology. Part 4: Distribution and abundance at the community level. Chapter 20: The nature of the community. Chapter 21: Community change. Chapter 22: Community organization I: biodiversity. Chapter 23: Community organization II: Predation and competition in equilibrial communities. Chapter 24: Community organization III: disturbance and nonequilibrium communities. Chapter 25: Ecosystem metabolism I: primary production. Chapter 26: Ecosystem metabolism II: secondary production. Chapter 27: Ecosystem metabolism III: nutrient cycles. Chapter 28: Ecosystem health: human impacts. Research Methods in Human Skeletal Biology serves as the one location readers can go to not only learn how to conduct research in general, but how research is specifically conducted within human skeletal biology. It outlines the current types of research being conducted within each sub-specialty of skeletal biology, and gives the reader the tools to set up a research project in skeletal biology. It also suggests several ideas for potential projects. Each chapter has an inclusive bibliography, which can serve as a good jumpstart for project references. Provides a step-by-step guide to conducting research in human skeletal biology Covers diverse topics (sexing, aging, stature and ancestry estimation) and new technologies (histology, medical imaging, and geometric morphometrics) Excellent accompaniment to existing forensic anthropology or osteology works Biodiversity-the genetic variety of life-is an exuberant product of the evolutionary past, a vast human-supportive resource (aesthetic, intellectual, and material) of the present, and a rich legacy to cherish and preserve for the future. Two urgent challenges, and opportunities, for 21st-century science are to gain deeper insights into the evolutionary processes that foster biotic diversity, and to translate that understanding into workable solutions for the regional and global crises that biodiversity currently faces. A grasp of evolutionary principles and processes is important in other societal arenas as well, such as education, medicine, sociology, and other applied fields including agriculture, pharmacology, and biotechnology. The ramifications of evolutionary thought also extend into learned realms traditionally reserved for philosophy and religion. The central goal of the In the Light of Evolution (ILE) series is to promote the evolutionary sciences through state-of-the-art colloquia-in the series of Arthur M. Sackler colloquia sponsored by the National Academy of Sciences-and their published proceedings. Each installment explores evolutionary perspectives on a particular biological topic that is scientifically intriguing but also has special relevance to contemporary societal issues or challenges. This tenth and final edition of the In the Light of Evolution series focuses on recent developments in phylogeographic research and their relevance to past accomplishments and future research directions. This book is a unique synthesis of the major concepts and methods in bacterial population genetics in infectious disease, a field that is now about 35 yrs old. Emphasis is given to explaining population-level processes that shape genetic variation in bacterial populations and statistical methods of analysis of bacterial genetic data. A "how to" of bacterial population genetics, which covers an extremely large range of organisms Expanding area of science due to high-throughput genome sequencing of bacterial pathogens Covers both fundamental approaches to analyzing bacterial population structures with conceptual background in bacterial population biology Detailed treatment of statistical methods In 1990 Sibley and Monroe compiled a list of the world's birds. On that list were 9,672 species. In what has been something of a taxonomic revolution more have been added as vocalizations have been studied and DNA sequenced. Now there are likely to be close to 10,000 recognized extant species of birds, and many times that number that have gone extinct over the past 145 million years or so since the first know fossil bird, Archeopteryx. Speciation in Birds is an authoritative synthesis on the behavioral and genetic causes and consequences of speciation in birds. The leaf surface or phyllosphere is a major habitat for microorganisms. Microbes on or within leaves play important roles in plant ecology, and these microbes can be manipulated to enhance plant growth or reduce plant disease. This book presents a number of critical reviews by internationally recognized experts on the microbial ecology of leaves. Topics include methods of assessment of microbial populations on leaf surfaces, leaves as reservoirs of ice nucleation phenomenon, and leaves as microbial habitats in both aquatic and terrestrial environments. The book will be of interest to students and scientists in numerous disciplines, including botany, aerobiology, meteorology, ecology, agriculture, and microbiology. Wood, Robert M. Zink, Benjamin Zuckerberg Ecologists are aware of the importance of natural dynamics in ecosystems. Historically, the focus has been on the development in succession of equilibrium communities, which has generated an understanding of the composition and functioning of ecosystems. Recently, many have focused on the processes of disturbances and the evolutionary significance of such events. This shifted emphasis has inspired studies in diverse systems. The phrase "patch dynamics" (Thompson, 1978) describes their common focus. The Ecology of Natural Disturbance and Patch Dynamics brings together the findings and ideas of those studying varied systems, presenting a synthesis of diverse individual contributions. Concepts of Biology is designed for the single-semester introduction to biology course for non-science majors, which for many students is their only college-level science course. As such, this course represents an important opportunity for students to develop the necessary knowledge, tools, and skills to make informed decisions as they continue with their lives. Rather than being mired down with facts and vocabulary, the typical non-science major student needs information presented in a way that is easy to read and understand. Even more importantly, the content should be meaningful. Students do much better when they understand why biology is relevant to their everyday lives. For these reasons, Concepts of Biology is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. We also strive to show the interconnectedness of topics within this extremely broad discipline. In order to meet the needs of today's instructors and students, we maintain the overall organization and coverage found in most syllabi for this course. A strength of Concepts of Biology is that instructors can customize the book, adapting it to the approach that works best in their classroom. Concepts of Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand--and apply--key concepts. Introduction to Conservation GeneticsCambridge University Press Now that so many ecosystems face rapid and major environmental change, the ability of species to respond to these changes by dispersing or moving between different patches of habitat can be crucial to ensuring their survival. Understanding dispersal has become key to understanding how populations may persist. Dispersal Ecology and Evolution provides a timely and wide-ranging overview of the fast expanding field of dispersal ecology, incorporating the very latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species, and community levels are considered. Perspectives and insights are offered from the fields of evolution, behavioural ecology, conservation biology, and genetics. Throughout the book theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible - both plant and animal. This volume captures the state-of-the-art in the study of insect-plant interactions, and marks the transformation of the field into evolutionary biology. The contributors present integrative reviews of uniformly high quality that will inform and inspire generations of academic and applied biologists. Their presentation together provides an invaluable synthesis of perspectives that is rare in any discipline.--Brian D. Farrell, Professor of Organismic and Evolutionary Biology, Harvard University Tilmon has assembled a truly wonderful and rich volume, with contributions from the lion's share of fine minds in evolution and ecology of herbivorous insects. The topics comprise a fascinating and deep coverage of what has been discovered in the prolific recent decades of research with insects on plants. Fascinating chapters provide deep analyses of some of the most interesting research on these interactions. From insect plant chemistry, behavior, and host shifting to phylogenetics, co-evolution, life-history evolution, and invasive plant-insect interaction, one is hard pressed to name a substantial topic not included. This volume will launch a hundred graduate seminars and find itself on the shelf of everyone who is anyone working in this rich landscape of disciplines.--Donald R. Strong, Professor of Evolution and Ecology, University of California, Davis Seldom have so many excellent authors been brought together to write so many good chapters on so many important topics in organismic evolutionary biology. Tom Wood, always unassuming and inspired by living nature, would have been amazed and pleased by this tribute.--Mary Jane West-Eberhard, Smithsonian Tropical Research Institute Examines theories and methods used to study age-structured populations. These volumes discuss evolutionary biology through the lense of population genetics. This title addresses the need for review and assessment of the framework of interdisciplinary population studies. Limitations to prevailing post-war paradigms like the Evolutionary Synthesis and Demographic Transition were becoming evident by the 1970s. Subsequent decades have witnessed an immense expansion of population modelling and related empirical inquiry. The volume presents revised papers of an international symposium marking 40 years of the Human Sciences programme at the University of Oxford. Spatial dynamics, landscape, population. Genetic diversity, biodiversity, population management. Sequenced biological macromolecules have revitalized systematic studies of evolutionary history. Molecular Systematics of Fishes is the first authoritative overview of the theory and application of these sequencing data to fishes. This volume explores the phylogeny of fishes at multiple taxonomic levels, uses methods of analysis of molecular data that apply both within and between fish populations, and employs molecule-based phylogenies to address broader questions of evolution. Targeted readers include ichthyologists, marine scientists, and all students, faculty, and researchers interested in fish evolution and ecology and vertebrate systematics. Focuses on the phylogeny and evolutionary biology of fishes Contains phylogenies of fishes at multiple taxonomic levels Applies molecule-based phylogenies to broader questions of evolution Includes methods for critique of analysis of molecular data Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7). Carnivores have always fascinated us, even though they make up only 10% of all mammalian genera and only about 2% of all mammalian biomass. In Greek mythology most of the gods adorned their robes and helmets with depictions of carnivores, and the great hero Hercules' most famous feat was killing the "invulnerable" lion with his bare hands. Part of our fascination with carnivores stems from fright and intrigue, and sometimes even hatred because of our direct competition with them. Cases of "maneating" lions, bears, and wolves, as well as carnivores' reputation as killers of livestock and game, provoke communities and governrpents to adopt sweeping policies to exterminate them. Even President Theodore Roosevelt, proclaimer of a new wildlife protectionism, described the wolf as "the beast of waste and desolation." The sheer presence and power of carnivores is daunt ing: they can move quickly yet silently through forests, attaining rapid bursts of speed when necessary; their massive muscles are aligned to deliver powerful attacks, their large canines and strong jaws rip open carcasses, and their scis sor-like carnassials slice meat. Partly because of our fear of these attributes, trophy hunting of carnivores has been, and to a certain extent still is, a sign of bravery and skill. Among some Alaskan Inuit, for example, a man is not eligible for marriage until he has killed a succession of animals of increasing size and dangerousness, culminating with the most menacing, the polar bear. Human-induced environmental change currently represents the single greatest threat to global biodiversity. Species are typically adapted to the local environmental conditions in which they have evolved. Changes in environmental conditions initially influence behaviour, which in turn affects species interactions, population dynamics, evolutionary processes and, ultimately, biodiversity. How animals respond to changed conditions, and how this influences population viability, is an area of growing research interest. Yet, despite the vital links between environmental change, behaviour, and population dynamics, surprisingly little has been done to bridge these areas of research. Behavioural Responses to a Changing World is the first book of its kind devoted to understanding behavioural responses to environmental change. The volume is comprehensive in scope, discussing impacts on both the mechanisms underlying behavioural processes, as well as the longer-term ecological and evolutionary consequences. Drawing on international experts from across the globe, the book covers topics as diverse as endocrine disruption, learning, reproduction, migration, species interactions, and evolutionary rescue. The Fundamentals series introduces students to the principles of the law by way of clear text combined with visual aids, tools and diagrams to enable an easy understanding of the subject without sacrificing the detail that is required for proper comprehension. Each title assumes no level of prior knowledge, allowing the book to be used for those new to the subject and for distance learning. Criminal Law - The Fundamentals includes full coverage of all topics likely to be studied on Criminal Law courses and it includes summaries of the key Law Commission's proposals for reform where relevant. According to the National Institute of Health, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or absence of a disease or condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. This burgeoning science merges the principles of statistics and genetics studies to make sense of the vast amounts of information available with the mapping of genomes. In order to make the most of the information available, statistical tools must be tailored and translated for the analytical issues which are original to large-scale association studies. Analysis of Complex Disease Association Studies will provide researchers with advanced biological knowledge who are entering the field of genome-wide association studies with the groundwork to apply statistical analysis tools appropriately and effectively. With the use of consistent examples throughout the work, chapters will provide readers with best practice for getting started (design), analyzing, and interpreting data according to their research interests. Frequently used tests will be highlighted and a critical analysis of the advantages and disadvantage complimented by case studies for each will provide readers with the information they need to make the right choice for their research. Additional tools including links to analysis tools, tutorials, and references will be available electronically to ensure the latest information is available. Easy access to key information including advantages and disadvantage of tests for particular applications, identification of databases, languages and their capabilities, data management risks, frequently used tests Extensive list of references including links to tutorial websites Case studies and Tips and Tricks Today many school students are shielded from one of the most important concepts in modern science: evolution. In engaging and conversational style, Teaching About Evolution and the Nature of Science provides a well-structured framework for understanding and teaching evolution. Written for teachers, parents, and community officials as well as scientists and educators, this book describes how evolution reveals both the great diversity and similarity among the Earth's organisms; it explores how scientists approach the question of evolution; and it illustrates the nature of science as a way of knowing about the natural world. In addition, the book provides answers to frequently asked questions to help readers understand many of the issues and misconceptions about evolution. The book includes sample activities for teaching about evolution and the nature of science. For example, the book includes activities that investigate fossil footprints and population growth that teachers of science can use to introduce principles of evolution. Background information, materials, and step-by-step presentations are provided for each activity. In addition, this volume: Presents the evidence for evolution, including how evolution can be observed today. Explains the nature of science through a variety of examples. Describes how science differs from other human endeavors and why evolution is one of the best avenues for helping students understand this distinction. Answers frequently asked questions about evolution. Teaching About Evolution and the Nature of Science builds on the 1996 National Science Education Standards released by the National Research Council--and offers detailed guidance on how to evaluate and choose instructional materials that support the standards. Comprehensive and practical, this book brings one of today's educational challenges into focus in a balanced and reasoned discussion. It will be of special interest to teachers of science, school administrators, and interested members of the community. Urban Evolutionary Biology fills an important knowledge gap on wild organismal evolution in the urban environment, whilst offering a novel exploration of the fastgrowing new field of evolutionary research. The growing rate of urbanization and the maturation of urban study systems worldwide means interest in the urban environment as an agent of evolutionary change is rapidly increasing. We are presently witnessing the emergence of a new field of research in evolutionary biology. Despite its rapid global expansion, the urban environment has until now been a largely neglected study site among evolutionary biologists. With its conspicuously altered ecological dynamics, it stands in stark contrast to the natural environments traditionally used as cornerstones for evolutionary ecology research. Urbanization can offer a great range of new opportunities to test for rapid evolutionary processes as a consequence of human activity, both because of replicate contexts for hypothesis testing, but also because cities are characterized by an array of easily quantifiable environmental axes of variation and thus testable agents of selection. Thanks to a wide possible breadth of inference (in terms of taxa) that may be studied, and a great variety of analytical methods, urban evolution has the potential to stand at a fascinating multidisciplinary crossroad, enriching the field of evolutionary biology with emergent yet incredibly potent new research themes where the urban habitat is key. Urban Evolutionary Biology is an advanced textbook suitable for graduate level students as well as professional researchers studying the genetics, evolutionary biology, and ecology of urban environments. It is also highly relevant to urban ecologists and urban wildlife practitioners. A range of theories on the rates of evolution-from static to gradual to punctuated to quantum-have been developed, mostly by comparing morphological changes over geological timescales as described in the fossil record. This novel book provides the reader with the fundamentals of data collection, model construction, analyses, and interpretation across a wide repertoire of demographic techniques and protocols, clearly guided throughout with fully reproducible R scripts. Invasion Genetics: the Baker & Stebbins legacy provides a state-of-the-art treatment of the evolutionary biology of invasive species, whilst also revisiting the historical legacy of one of the most important books in evolutionary biology: The Genetics of Colonizing Species, published in 1965 and edited by Herbert Baker and G. Ledyard Stebbins. This volume covers a range of topics concerned with the evolutionary biology of invasion including: phylogeography and the reconstruction of invasion history; demographic genetics; the role of stochastic forces in the invasion process; the contemporary evolution of local adaptation; the significance of epigenetics and transgenerational plasticity for invasive species; the genomic consequences of colonization; the search for invasion genes; and the comparative biology of invasive species. A wide diversity of invasive organisms are discussed including plants, animals, fungi and microbes. Provides a quantitative and Darwinian perspective on population biology, with problem sets, simulations and worked examples to aid the student. Thoroughly updated and reorganized, Strickberger's Evolution, Fourth Edition, presents biology students with a basic introduction to prevailing knowledge and ideas about evolution, discussing how, why, and where the world and its organisms changed throughout history. Keeping consistent with Strickberger's engaging writing style, the authors carefully unfold a broad range of philosophical and historical topics that frame the theories of today including cosmological and geological evolution and its impact on life, the origins of life on earth, the development of molecular pathways from genetic systems to organismic morphology and function, the evolutionary history of organisms from microbes to animals, and the numerous molecular and populational concepts that explain the earth's dynamic evolution. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition. IIZUKA '96, the 4th International Conference on Soft Computing, emphasized the integration of the components of soft computing to promote the research work on post-digital computers and to realize the intelligent systems. At the conference, new developments and results in soft computing were introduced and discussed by researchers from academic, governmental, and industrial institutions. This volume presents the opening lectures by Prof. Lotfi A. Zadeh and Prof. Walter J. Freeman, the plenary lectures by seven eminent researchers, and about 200 carefully selected papers drawn from more than 20 countries. It documents current research and in-depth studies on the conception, design, and application of intelligent systems. A fresh, distinctive approach to the teaching of molecular biology. With its focus on key principles, its emphasis on the commonalities that exist between the three kingdoms of life, and its integrated coverage of experimental methods and approaches, Molecular Biology is the perfect companion to any molecular biology course. Written for those with a minimal science background, Evolution: Principles and Processes provides a concise introduction of evolutionary topics for the one-term course. Using an engaging writing style and a wealth of full-color illustrations, Hall covers all topics from the origin of universe, Earth, the origin of life, and on to how humans influence the evolution of $\frac{Page}{P}$ other species. He brings together the principles and processes that explain evolutionary change and discusses the patterns of life that have resulted from the operation of evolution over the past 3.5 billion years. This overview, coupled with numerous case studies and examples, helps readers understand and truly appreciate the origin and diversity of life. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition. Studies the biological characteristics and internal structure of animal species, and analyzes the significance of the genetic factor in evolution New viral diseases are emerging continuously. Viruses adapt to new environments at astounding rates. Genetic variability of viruses jeopardizes vaccine efficacy. For many viruses mutants resistant to antiviral agents or host immune responses arise readily, for example, with HIV and influenza. These variations are all of utmost importance for human and animal health as they have prevented us from controlling these epidemic pathogens. This book focuses on the mechanisms that viruses use to evolve, survive and cause disease in their hosts. Covering human, animal, plant and bacterial viruses, it provides both the basic foundations for the evolutionary dynamics of viruses and specific examples of emerging diseases. * NEW - methods to establish relationships among viruses and the mechanisms that affect virus evolution * UNIQUE - combines theoretical concepts in evolution with detailed analyses of the evolution of important virus groups * SPECIFIC - Bacterial, plant, animal and human viruses are compared regarding their interation with their hosts Principles of Behavioral Genetics provides an introduction to the fascinating science that aims to understand how our genes determine what makes us tick. It presents a comprehensive overview of the relationship between genes, brain, and behavior. Introductory chapters give clear explanations of basic processes of the nervous system and fundamental principles of genetics of complex traits without excessive statistical jargon. Individual chapters describe the genetics of social interactions, olfaction and taste, memory and learning, circadian behavior, locomotion, sleep, and addiction, as well as the evolution of behavior. Whereas the focus is on genetics, neurobiological and ecological aspects are also included to provide intellectual breadth. The book uses examples that span the gamut from classical model organisms to nonmodel systems and human biology, and include both laboratory and field studies. Samples of historical information accentuate the text to provide the reader with an appreciation of the history of the field. This book will be a valuable resource for future generations of scientists who focus on the field of behavioral genetics. Defines the emerging science of behavioral genetics Engagingly written by two leading experts in behavioral genetics Clear explanations of basic quantitative genetic, neurogenetic and genomic applications to the study of behavior Numerous examples ranging from model organisms to non-model systems and humans Concise overviews and summaries for each chapter This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds,... Copyright: 51272719c36268e278cc404d998dd993