A Novel Three Phase Three Leg Ac Ac Converter Using Nine Igbts

This book presents the select proceedings of the International Conference on Automation, Signal Processing, Instrumentation and Control (i-CASIC) 2020. The book mainly focuses on emerging technologies in electrical systems, IoT-based instrumentation, advanced industrial automation, and advanced image and signal processing. It also includes studies on the analysis, design and implementation of instrumentation systems, and high-accuracy and energy-efficient controllers. The contents of this book will be useful for beginners, researchers as well as professionals interested in instrumentation and control, and other allied fields.

The two major broad applications of electrical energy are information processing and energy processing. Hence, it is no wonder that electric machines have occupied a large and revered space in the field of electrical engineering. Such an important topic requires a careful approach, and Charles A. Gross' Electric Machines offers the most balanced, application-oriented, and modern perspective on electromagnetic machines available. Written in a style that is both accessible and authoritative, this book explores all aspects of electromagnetic-mechanical (EM) machines. Rather than viewing the EM machine in isolation, the author treats the machine as part of an integrated system of source, controller, motor, and load. The discussion progresses systematically through basic machine physics and principles of operation to real-world applications and relevant control issues for each type of machine presented. Coverage ranges from DC, induction, and synchronous machines to specialized machines such as transformers, translational machines, and microelectromechanical systems (MEMS). Stimulating example applications include electric vehicles, wind energy, and vertical transportation. Numerous example problems illustrate and reinforce the concepts discussed. Along with appendices filled with unit conversions and background material, Electric Machines is a succinct, in-depth, and complete guide to understanding electric machines for novel applications.

In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.

The ever-growing shortage of energy resources continues to make the development of renewable energy sources, energy-saving techniques, and power supply quality an increasingly critical issue. To meet the need to develop renewable and energy-saving power sources, green energy source systems require large numbers of converters. New converters, such as the Vienna rectifier and z-source inverters, are designed to improve the power factor and increase power efficiency. Power Electronics: Advanced Conversion Technologies gives those working in power electronics useful and concise information regarding advanced converters. Offering methods for determining accurate solutions in the design of converters for industrial applications, this book details more than 200 topologies concerning advanced converters that the authors themselves have developed. The text analyzes new
converter circuits that have not been widely examined, and it covers the rapid advances in the field, presenting ways to solve and correct the historical problems associated with them. The technology of DC/DC conversion is making rapid progress. It is estimated that more than 600 topologies of DC/DC converters exist, and new ones are being created every year. The authors completed the mammoth task of systematically sorting and categorizing the DC/DC converters into six groups and have made major contributions to voltage-lift and super-lift techniques. Detailing the authors’ work, this book investigates topics including traditional AC/DC diode rectifiers controlled AC/DC rectifiers power factor correction unity power factor techniques pulse-width-modulated DC/AC inverters multilevel DC/AC inverters traditional and improved AC/AC converters converters used in renewable energy source systems With many examples and homework problems to help the reader thoroughly understand design and application of power electronics, this volume can be used both as a textbook for university students studying power electronics and a reference book for practicing engineers.

A Novel Three-phase Utility Interface for Photovoltaic Wind-electric and Fuel Cell Systems

Design, Modeling and Control of a 12.47 KV Isolated Three Phase Power Factor Correction Rectifier

HVDC CONVERTER, BY-PASS VALVE, GTO THYRISTER, HARMONICS, REACTIVE VOLT-AMPERE ABSORPTION.

Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems.

This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.

This thesis proposes new power converter topologies suitable for aircraft systems. It also proposes both AC-DC and DC-DC types of converters for different electrical loads to improve the performance these systems. To increase fuel efficiency and reduce environmental impacts, less efficient non-electrical aircraft systems are being replaced by electrical systems. However, more electrical systems requires
more electrical power to be generated in the aircraft. The increased consumption of electrical power in both civil and military aircrafts has necessitated the use of more efficient electrical power conversion technologies. This book presents a comprehensive mathematical analysis and the design and digital simulation of the power converters. Subsequently it discusses the construction of the hardware prototypes of each converter and the experimental tests carried out to verify the benefits of the proposed solutions in comparison to the existing solutions. Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems—including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters. Resolve Historic Problems in Conversion Technologies Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series—laddered multilevel inverters—that uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications. Tap the Knowledge of Pioneers in the Field This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems. Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and smart control of power electronics in devices, microgrids, and at system levels.

The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies. A practical, application-oriented text that presents analytical results for the better modeling and control of power converters in the integration
of green energy in electric power systems. The combined technology of power semiconductor switching devices, pulse width modulation algorithms, and control theories are being further developed along with the performance improvement of power semiconductors and microprocessors so that more efficient, reliable, and cheaper electric energy conversion can be achieved within the next decade. Integration of Green and Renewable Energy in Electric Power Systems covers the principles, analysis, and synthesis of closed loop control of pulse width modulated converters in power electronics systems, with special application emphasis on distributed generation systems and uninterruptible power supplies. The authors present two versions of a documented simulation test bed for homework problems and projects based on Matlab/Simulink, designed to help readers understand the content through simulations. The first consists of a number of problems and projects for classroom teaching convenience and learning. The second is based on the most recent work in control of power converters for the research of practicing engineers and industry researchers. Addresses a combination of the latest developments in control technology of pulse width modulation algorithms and digital control methods. Problems and projects have detailed mathematical modeling, control design, solution steps, and results. Uses a significant number of tables, circuit and block diagrams, and waveform plots with well-designed, class-tested problems/solutions and projects designed for the best teaching-learning interaction. Provides computer simulation programs as examples for ease of understanding and platforms for the projects. Covering major power-conversion applications that help professionals from a variety of industries, Integration of Green and Renewable Energy in Electric Power Systems provides practical, application-oriented system analysis and synthesis that is instructional and inspiring for practicing electrical engineers and researchers as well as undergraduate and graduate students.

For ease of use, this edition has been divided into the following subject sections: general principles; materials and processes; control, power electronics and drives; environment; power generation; transmission and distribution; power systems; sectors of electricity use. New chapters and major revisions include: industrial instrumentation; digital control systems; programmable controllers; electronic power conversion; environmental control; hazardous area technology; electromagnetic compatibility; alternative energy sources; alternating current generators; electromagnetic transients; power system planning; reactive power plant and FACTS controllers; electricity economics and trading; power quality. *An essential source of techniques, data and principles for all practising electrical engineers* *Written by an international team of experts from engineering companies and universities* *Includes a major new section on control systems, PLCs and microprocessors*

This book comprises select proceedings of the international conference ETAEERE 2020, and primarily focuses on renewable energy resources and smart grid technologies. The book provides valuable information on the technology and design of power grid integration on microgrids of green energy sources. Some of the topics covered include solar PV array, hybrid microgrid, daylight harvesting, green computing, photovoltaic applications, nanogrid applications, AC/DC/AC converter for wind energy systems, solar photovoltaic panels, PEM fuel cell system, and biogas run dual-fueled diesel engine. The contents of this book will be useful for researchers and practitioners working in the areas of smart grids and renewable energy generation, distribution, and management. I have observed that recent developments in power electronics have proceeded in two different directions, namely, low power range power supplies using high frequency PWM technique and medium to high power range energy control...
systems to serve specific Purpose.

This book presents a survey of recent developments in protein biochemistry. Top researchers in the field of protein biochemistry describe modern methods to address the challenges of protein purification by three-phase partitioning, and their folding and degradation by the functions of chaperones. The significance of peptide purity for fibril formation is addressed as well as the use of target oriented peptide arrays in palliative approaches in mucoviszidose. The design and application of protein epitope mimetics just as the structural resolving of the misfolding of various mutant proteins in serpinopathies enlarge our tools in resolving pathophysiological imbalances.

This book focuses on soft computing and how it can be applied to solve real-world problems arising in various domains, ranging from medicine and healthcare, to supply chain management, image processing and cryptanalysis. It gathers high-quality papers presented at the International Conference on Soft Computing: Theories and Applications (SoCTA 2019), organized by the National Institute of Technology Patna, India. Offering valuable insights into soft computing for teachers and researchers alike, the book will inspire further research in this dynamic field.

The Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systems—such as neural networks, fuzzy systems, and evolutionary methods—in terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components. Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Power Electronics and Motor Drives facilitates a necessary shift from low-power electronics to the high-power varieties used to control electromechanical systems and other industrial applications. This volume of the handbook: Focuses on special high-power semiconductor devices Describes various electrical machines and motors, their principles of operation, and their limitations Covers power conversion and the high-efficiency devices that perform the necessary switchover between AC and DC Explores very specialized electronic circuits for the efficient control of electric motors Details other applications of power electronics, aside from electric motors—including lighting, renewable energy conversion, and automotive electronics Addresses power electronics used in very-high-power electrical systems to transmit energy Other volumes in the set: Fundamentals of Industrial Electronics Control and Mechatronics Industrial Communication Systems Intelligent Systems
The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. Summarizing all the most important synthesis techniques used in the lab as well as in industry, this book is comprehensive in its coverage from chemical, physical and mechanical viewpoints. This book helps readers to choose the correct synthesis route, such as suspension and miniemulsion polymerization, living polymerization, sonication, mechanical methods or the use of radiation, and so achieve the desired composite properties.

This volume includes extended and revised versions of a set of selected papers from the International Conference on Electric and Electronics (EEIC 2011), held on June 20-22, 2011, which is jointly organized by Nanchang University, Springer, and IEEE IAS Nanchang Chapter. The objective of EEIC 2011 Volume 4 is to provide a major interdisciplinary forum for the presentation of new approaches from Communication Systems and Information Technology, to foster integration of the latest developments in scientific research. 137 related topic papers were selected into this volume. All the papers were reviewed by 2 program committee members and selected by the volume editor Prof. Ming Ma. We hope every participant can have a good opportunity to exchange their research ideas and results and to discuss the state of the art in the areas of the Communication Systems and Information Technology.

Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (SCR) whereas matrix converters are built using semiconductor bidirectional switches. This text book provides a summary of AC to AC Converter modelling excluding AC controllers. The software Simulink® by Mathworks Inc., USA is used to develop the models of AC to AC Converters presented in this text book. The term model in this text book refers to SIMULINK model. This text book is mostly suitable for researchers and practising professional engineers in the industry working in the area of AC to AC converters. Features Provides a summary of AC to AC Converter modelling excluding AC controllers Includes models for three phase AC to three phase AC matrix converters using direct and indirect space vector modulation algorithm Presents new applications such as single and dual programmable AC to DC rectifier with derivations for output voltage Displays Hardware-in-the Loop simulation of a three phase AC to single phase AC matrix converter Provides models for three phase multilevel matrix converters, Z-source Direct and Quasi Z-source Indirect matrix converters; a model for speed control and brake by plugging of three phase induction motor and separately excited DC motors using matrix converter; a model for a new single phase and three phase sine wave direct AC to AC Converter without a DC link using three winding transformers and that for a square wave AC to square wave AC converter using a DC link; models for variable frequency, variable voltage AC
to AC power supply; models for Solid State Transformers using Dual Active Bridge topology and a new direct AC to AC Converter topology; and models for cycloconverters and indirect matrix converters

This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.

Advances in Bioartificial Materials and Tissue Engineering Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Bioartificial Materials and Tissue Engineering. The editors have built Advances in Bioartificial Materials and Tissue Engineering Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Bioartificial Materials and Tissue Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Bioartificial Materials and Tissue Engineering Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Góra. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept will also be valuable to power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such
as automation and aviation.
Develop the skills and knowledge to make informed decisions regarding technical factors and diagnostic imaging quality with the vibrantly illustrated Radiologic Science for Technologists, 10th Edition. Updated with the latest advances in the field, this full-color and highly detailed edition addresses a broad range of radiologic disciplines and provides a strong foundation in the study and practice of radiologic physics, imaging, radiobiology, radiation protection, and more. Unique learning tools strengthen your understanding of key concepts and prepare you for success on the ARRT certification exam and in clinical practice. Broad coverage of radiologic science topics — including radiologic physics, imaging, radiobiology, radiation protection, and more — allows you to use the text over several semesters. Highlighted math formulas call attention to mathematical information for special focus. Important Concept boxes recap the most important chapter information. Colored page tabs for formulas, conversion tables, abbreviations, and other data provide easy access to frequently used information. End-of-chapter questions include definition exercises, short answer, and calculations to help you review material. Key terms and expanded glossary enable you to easily reference and study content. Chapter introductions, summaries, objectives, and outlines help you organize and pinpoint the most important information. NEW! Chapters on digital radiographic technique and digital image display prepare you to use today’s technology. NEW! Streamlined physics and math sections ensure you are prepared to take the ARRT exam and succeed in the clinical setting.

This book is a technical publication for students, scholars and engineers in electrical engineering, focusing on the pulse-width-modulation (PWM) technologies in power electronics area. Based on an introduction of basic PWM principles this book analyzes three major challenges for PWM on system performance: power losses, voltage/current ripple and electromagnetic interference (EMI) noise, and the lack of utilization of control freedoms in conventional PWM technologies. Then, the model of PWM's impact on system performance is introduced, with the current ripple prediction method for voltage source converter as example. With the prediction model, two major advanced PWM methods are introduced: variable switching frequency PWM and phase-shift PWM, which can reduce the power losses and EMI for the system based on the prediction model. Furthermore, the advanced PWM can be applied in advanced topologies including multilevel converters and paralleled converters. With more control variables in the advanced topologies, performance of PWM can be further improved. Also, for the special problem for common-mode noise, this book introduces modified PWM method for reduction. Especially, the paralleled inverters with advanced PWM can achieve good performance for the common-mode noise reduction. Finally, the implementation of PWM technologies in hardware is introduced in the last part.

Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterisation, and performance.

This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the
University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems.

A novel three-phase rectifier with power factor correction feature is proposed for the medium voltage (MV) high power (HP) applications. A typical application is to use it as the front-end circuit to interface with power grid and supply the power to a customized load, including medium voltage variable frequency drive (MV-VFD), electric vehicle bus charger, cargo ship and renewable energy source. The proposed topology has numerous advantages over conventional systems in regarding of the system efficiency, reactive power consumption, power density and operating flexibility. On the other side, this system has some challenges in semiconductor selection, control logic development, current harmonics elimination, modular implementation and system protection strategy design. The advanced silicon carbide (SiC) MV isolated three-phase power factor correction rectifier (MV-PFC) is targeting to the MV-VFD application. Chapter 1 is a system review of the industrial MV-VFD products in regarding of its major industrial applications, grid voltage and power ratings, motor control requirements, popular semiconductor devices and recognized circuit topologies. Following the chapter 1, chapter 2 reviews the popular topologies cited in both academic projects and industrial products. Each topology is analyzed and investigated thoroughly. Then, a table summarizes the pros and cons of each circuit in terms of the system flexibility, regeneration capability, galvanic isolation rating, system power density, operating redundancy, power module rating, switching frequency, modulation complexity, power quality and operating efficiency. Next, a novel MV three-phase PFC topology is proposed to boost up the system performance to the next level. In another word, this topology meets all the system operating demands with higher efficiency and better power density. Furthermore, it improves the system operating flexibility and the fault tolerance margin. A silicon carbide metal-oxide semiconductor field-effect transistor (SiC MOSFET) module, rated at 12.5 kV and 375 A, is developed as the core component for the power circuit. Its internal chip layout is designed accordingly. Both the electric and thermal features of this power module are characterized to describe its performance envelope. Furthermore, the device mathematic model is implemented for system power loss and thermal energy distribution studies. After finalizing the circuit architecture design, a novel control scheme including both modulation feedforward control and output feedback regulation is developed. The internal loop uses the power command reference, grid input and DC output to calculate the MOSFET firing angles for the next switching event. The outer loop generates the power command reference and evenly assigns it to all three phases based on the real-time load condition. Then, an application state machine, including I/O management, soft start-up strategy and system protection scheme, is designed to promote the overall design close to the industrial product. The soft start-up strategy effectively limits the inrush current and charges the output DC bus from zero to full energy level safely. For the sake of the functional validation, the system steady state study includes different loading conditions. Considering the long-term operating reliability, the case study covers the power grid oscillation situation and four different fault scenarios. The protection scheme is developed to accurately detect the fault location and recover the system from the fault when
possible. An issue is found from the system steady state study, which is the input grid current distortion at the ultra-light load condition. In order to resolve this problem, an additional hardware circuit including a separate inductor and bypass breaker is added, which increases the damping effect in the middle-stage circuit. The control scheme is modified to coordinate with the improved topology. As a result, the system can operate safely and reliably at the ultra-light condition with the minimum current harmonics. As an alternative design approach for the integrated system structure, the modular dual-active-bridge (DAB) PFC rectifier is developed. The modular structure greatly decreases the device and component power stress and brings in some operating redundancy. In the meanwhile, the difference coming from module hardware arises the challenge to the inter-module power and voltage balancing control. A novel inter-module balance control layer is described in the chapter 6. As a result, the unbalance coefficient between modules is less than 1%. In addition, the protection strategy for the modular system is developed, which can cut off the defective power module and bring the rest of the system back to the 100% performance status within the half line cycle.

The introductory chapter to this book is like traveling in a time machine into past, present, and future of electric power conversion. Archeological discoveries are being transformed into the discoveries of the future. The book is an incursion to electric power conversion through electromechanical power conversion, static power conversion, and applications in the field. Each of the above-mentioned sections analyzes the knowledge gained using the experimental results of valuable research projects. Novice readers will learn how energy is converted adequately and adapted to different consumers. Advanced readers will discover different kinds of modern solutions and tendencies in the field of electric power conversion.

Control in Power Electronics explores all aspects of the study and use of electronic integrated circuits for the control and conversion of electrical energy. This technology is a critical part of our energy infrastructure, and supports almost all important electrical applications and devices. Improvements in devices and advances in control concepts have led to steady improvements in power electronic applications. This is driving a tremendous expansion of their applications. Control in Power Electronics brings together a team of leading experts as contributors. This is the first book to thoroughly combine control methods and techniques for power electronic systems. The development of new semiconductor power components, new topologies of converters from one side coupled with advances in modern control theory and digital signal processors has made this book possible and presents the applications necessary for modern design engineers. The authors were originally brought together to share research and applications through the international Danfoss Professor Programme at Aalborg University in Denmark. Personal computers would be unwieldy and inefficient without power electronic dc supplies. Portable communication devices and computers would also be impractical. High-performance lighting systems, motor controls, and a wide range of industrial controls depend on power electronics. In the near future we can expect strong growth in automotive applications, dc power supplies for communication systems, portable applications, and high-end converters. We are approaching a time when all electrical energy will be processed and controlled through power electronics somewhere in the path from generation to end use.